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Modeling urban growth patterns with correlated percolation
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We propose and test a model that describes the morphology of cities, the scaling of the urban perimeter of
individual cities, and the area distribution of systems of cities. The model is also consistent with observable
urban growth dynamics, our results agreeing both qualitatively and quantitatively with urban data. The result-
ing growth morphology can be understood from interactions among the constituent units forming an urban
region, and can be modeled using a correlated percolation model in the presence of a gradient.
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I. INTRODUCTION

Traditional approaches to urban science as exemplifie
the work of Christaller@1#, Zipf @2#, Stewart and Warntz@3#,
Beckmann@4#, and Krugman@5# are based on the assum
tion that cities grow homogeneously in a manner that s
gests that their morphology can be described using con
tional Euclidean geometry. However, recent studies h
proposed@6# that the complex spatial phenomena associa
with actual urban systems is rather better described u
fractal geometry consistent with growth dynamics in dis
dered media@7–9#.

Predicting urban growth dynamics also presents a c
lenge to theoretical frameworks for cluster dynamics, in t
different mechanisms clearly drive urban growth from tho
which have been embodied in existing physical models
this paper, we develop a mathematical model that relates
physical form of a city and the system within which it exis
to the locational decisions of its population, thus illustrati
how paradigms from physical and chemical science can h
explain a uniquely different set of natural phenomena—
physical arrangement, configuration, and size distribution
towns and cities. Specifically, we argue that the basic id
of percolation theory when modified to include the fact th
the elements forming clusters are not statistically indep
dent of one another but are correlated, can give rise to m
phologies that bear both qualitative and quantitative res
blance to the form of individual cities and systems of citie
Some of these results were briefly described in Ref.@10#.

We consider the application of statistical physics to urb
growth phenomena to be extremely promising, yielding
variety of valuable information concerning the way citi
grow and change, and more importantly, the way they mi
be planned and managed. Such information includes~but is
not limited to! the following: ~i! the size distributions of
towns, in terms of their populations and areas;~ii ! the fractal
dimensions associated with individual cities and entire s
tems of cities;~iii ! interactions or correlations between citi
which provide insights into their interdependence; and~iv!
the relevance and effectiveness of local planning polic
particularly those which aim to manage and contain grow
PRE 581063-651X/98/58~6!/7054~9!/$15.00
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The size distribution of cities has been a fundamen
question in the theory of urban location since its inception
the late 19th century. In the introduction to his pioneeri
book published over 60 years ago, Christaller@1# posed a key
question: ‘‘Are there laws which determine the number, si
and distribution of towns?’’ This question has not been pro
erly answered since the publication of Christaller’s boo
notwithstanding the fact that Christaller’s theory ofcentral
places @1#, and its elaboration through theories suchthe
rank-size rule for cities@2–4# embody one of the corner
stones of human geography.

Our approach produces scaling laws that quantify s
distributions. These laws arise naturally from our model, a
they are consistent with the observed morphologies of in
vidual cities and systems of cities which can be characteri
by a number of fractal dimensions and percolation ex
nents. In turn, these dimensions are consistent with the d
sity of location around the core of any city, and thus t
theory we propose succeeds in tying together both intraur
and interurban location theories which have developed
parallel over the last 50 years. Furthermore, the striking f
that cities develop a power law distribution without the tu
ing of any external parameter might be associated with
ability of systems of cities to ‘‘self-organize’’@5#.

II. DLA MODEL

Cities grow in a way that might be expected to resem
the growth of two-dimensional aggregates of particles, a
this has led recent attempts@6,11,12# to model urban growth
using ideas from the statistical physics of clusters. In parti
lar, the model of diffusion limited aggregation~DLA !
@13,14# has been applied to describe urban growth@6#, and
results in treelike dendritic structures which have a core
‘‘central business district’’~CBD!. The DLA model is a
physical model used to describe aggregation phenomena
is related to problems from the field of oil recovery in whic
‘‘viscous fingering’’ occurs when a low viscosity fluid i
pushed under pressure into a fluid with a larger viscosity~as
occurs when an oil field is flooded with water in an attem
to ‘‘push out the oil’’!.
7054 © 1998 The American Physical Society



ge
m

pe
a
A

ve

er
tr

es
A
w

ar
ac

e
t

rv
er
ba

lo
lo

wo

he
n
nt
de
pa

e

is
op
n

ob
o
m

t
n
a

ty

it in-
ng-
d

te of
y of
adi-
on.

-
-
the

a

n-

on

o-
on-

ut

s,
imi-
in a

the
the

e a

pect

e

-

-

PRE 58 7055MODELING URBAN GROWTH PATTERNS WITH . . .
The DLA model predicts that there exists only one lar
fractal cluster that is almost perfectly screened from inco
ing ‘‘development units’’~people, capital, resources, etc.!, so
that almost all the cluster growth occurs in the extreme
ripheral tips. However, quantitative data do not support
the properties of the DLA model. For instance, the DL
model predicts that the urban population densityr(r ) de-
creases from the city center as a power law

r~r !;r D22, ~1!

wherer is the radial distance from the core, andD.1.7 is
the fractal dimension of DLA. However, urban data ha
been more commonly fit to an exponential decay@15#. In the
DLA model only one large central place or cluster is gen
ated, while a real urban area is formed by a system of cen
places that are spatially distributed in a hierarchy of citi
Still another concern regarding the morphology of the DL
model is that DLA is a simply connected cluster. Cities gro
in a more compact way, with a well-defined urban bound
or external perimeter not accounted for by the dendritic fr
tal growth of DLA.

Here we show that an alternative model, in which dev
opment units are correlated rather than being added to
cluster at random, is better able to reproduce the obse
morphology of cities and the area distribution of subclust
~‘‘towns’’ ! in an urban system, and can also describe ur
growth dynamics. Our ‘‘physical’’ model@10#, which corre-
sponds to the correlated percolation model@16–20# in the
presence of a density gradient@21–23#, is motivated by the
fact that in urban areas development attracts further deve
ment. The model offers the possibility of predicting the g
bal properties~such as scaling behavior! of urban morpholo-
gies.

III. CORRELATED PERCOLATION MODEL

In the model we now develop, we take into account t
points.

~i! First, data on population densityr(r ) of actual urban
systems are known to conform to the relation@15#

r~r !5r0e2lr , ~2!

wherer is the radial distance from the CBD situated at t
core, andl is the density gradient. The density gradie
quantifies the extent of the urban spread around the ce
core. The probability that a unit occupies a given spot
creases gradually as the distance from a central, com
core increases.

~ii ! Second, in actual urban systems, the developm
units are not positioned atrandom. Rather, there existcorre-
lationsarising from the fact that when a development unit
located in a given place, the probability of adjacent devel
ment units increases naturally; each site is not independe
occupied by a development unit, but is occupied with a pr
ability that depends on the occupancy of the neighborho
In urban settings, development units do not attach the
selves randomly to an existing cluster. Their placemen
strongly influenced by the presence of other units. Whe
unit occupies a certain location, the probability of addition
development is highest in its vicinity, and this probabili
-
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decreases at a certain rate as the distance from the un
creases. Thus the rules of placement are affected by lo
range ‘‘interactions’’ that influence how clusters form an
grow. What happens at a given site depends on the sta
many other sites. These correlations reflect the tendenc
people to locate next to one another, as articulated in tr
tional urban science as economies of urban agglomerati

In order to quantify these ideas, we consider thecorre-
latedpercolation model@16–20# in the presence of a concen
tration gradient@21–23#. We start by describing the uncor
related site percolation problem, which corresponds to
limit where correlations are so small as to be negligible@7–
9#. We first define a random numberu(r), called the occu-
pancy variable, at every siter5( i , j ) in a square lattice ofL2

sites. The numbersu(r) are uncorrelated numbers with
uniform probability distribution between@0,1#. A site in the
lattice is occupied if the occupancy variableu(r) is smaller
than the occupation probabilityp, which is a quantity fixed
for every site in the lattice. A cluster is a set of sites co
nected via nearest neighbor sites. Whenp is small only iso-
lated clusters exist. At a critical value of the concentrati
called pc an ‘‘incipient infinite cluster’’ forms which, for a
finite system, connects two sides of the system.

Our basic model is a percolation model modified to intr
duce correlations among the units, and the fact that the c
centrationp is not constant for all the points in the lattice b
presents the gradient shown in Eq.~2!. In our model we
consider ‘‘development units’’ representing building
people, and resources which are added to the cluster in s
lar fashion as in percolation. Since these units are added
correlated fashion, we next consider a modification of
percolation problem to incorporate correlations among
occupancy variablesu(r).

To introduce correlations among the variables we us
method proposed in Ref.@20# which is a modification of the
Fourier filtering method~Ffm! @24–26,18# suitable for large
systems. Consider a stationary sequence ofL2 uncorrelated
random numbers$u(r )%, r 5( i , j ),i , j 51, . . . ,L. The corre-
lation function is^u(r ) u(r 8)&;d r ,r 8 , with d r ,r 8 the Kro-
necker delta, and the brackets denote an average with res
to a Gaussian distribution. We use the sequence$u(r )% to
generate a new sequence$h(r )%, with a long-range power-
law correlation functionC(l ) of the form @20#

C~ l ![^u~r ! u~r 8!&5~11l 2!2a/2, ~3!

where l 5ur 2r 8u, a is the correlation exponent, and th
long-range correlations are relevant for 0,a,d52, where
d is the dimension of the substrate—a>2 corresponds to the
uncorrelated problem, anda→0 to the strongly correlated
problem.

The spectral densityS(q), defined as the Fourier trans
form of C(l ), has the form

S~q!5
2p

G~b211! S q

2D b2

Kb2
~q!, ~4!

where q5uqW u, qi52pmi /L, 2L/2<mi<L/2, i 51 and 2,
andb25(a22)/2. $h(q)% are the Fourier transform coeffi
cients of$h(r )%, and satisfy
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h~q!5„S~q!…1/2u~q!, ~5!

where $u(q)% are the Fourier transform coefficients
$u(r )%.

The actual numerical algorithm forF f m consists of the
following steps: ~i! Generate a two-dimensional sequen
$u(r )% of uncorrelated random numbers with a Gaussian
tribution, and calculate the Fourier transform coefficie
$u(q)%. ~ii ! Obtain $h(q)% using Eqs.~4! and ~5!. ~iii ! Cal-
culate the inverse Fourier transform of$h(q)% to obtain
$h(r )%, the sequence in real space with the desired pow
law correlation function which asymptotically behaves as

C~ l !;l 2a. ~6!

The assumption of power-law interactions is motivated
the fact that the ‘‘decision’’ for a development unit to b
placed in a given location decays gradually with the dista
from an occupied neighborhood.

Finally we consider that the development units are po
tioned with a probability which behaves in the same fash
as known for cities@Eq. ~2!#. Therefore, we relax the as
sumption that the concentrationp is constant for all the
points in the lattice, and we consider that the developm
units are positioned with an occupancy probability

p~r ![r~r !/r0 , ~7!

that behaves in the same fashion as is known in observa
of real cities. This last modification corresponds to the p
colation problem in the presence of a concentration grad
proposed in Refs.@21–23#.

In order to apply the above procedure to the percolat
problem, we study the probability distributionP(h) of the
correlated sequenceh(r ). We find that when the uncorre
lated variablesu(r ) are taken from a Gaussian distributio
h(r ) also has a Gaussian distribution. We next discretize
variables generating a sequencem( i , j ), according to
m( i , j )5Q„u2h(r )… where u is chosen to satisfyp(r )
5*2`

u P(h)dh, with p(r ) the occupancy probability andQ
is the Heaviside step function.

Notice that we have defined two different properties
the system. First we introduced long range correlatio
among the variables by modifying the occupancy variab
h(r ). These correlations are isotropic, i.e., all the points
space are connected by interactions quantified by a po
law. The fact that we consider a slowly decaying power-l
scale-free function is due to the fact that any other corre
tion function will display a cutoff after which correlation
are negligible. Since we are looking at properties of act
cities at large length scales, a coarse grain will transform
finite range correlated system into an uncorrelated syst
i.e., a system with a finite cutoff in the correlations becom
uncorrelated at large scales. This situation does not o
when we consider power law correlations of the form~6!,
since it is a scale-free function. Thus correlations are
pected to be relevant at all length scales. One must dis
guish the type of correlation introduced by Eq.~6! from the
correlations arising at the critical concentrationpc . In this
case, the connectedness length of the system is said t
infinite, since two occupied sites separated by an arbitr
distance may be connected by the infinite cluster, and t
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they are correlated in space. However, the correlations in
duced by Eq.~6! go beyond this type of connection betwee
sites. Due to correlation of type~6!, even sites which belong
to different clusters are correlated.

Second, we consider that the probability of occupancy
the sites decays exponentially, with the center point alw
occupied. This property of the system is independent of
type of correlation chosen. The correlation exponenta and
the density gradientl are the only parameters of the mod
to be determined by empirical observations.

IV. STATICS

We first discuss the influence of the correlations on
morphology of a system of cities generated in the pres
model. Therefore we fix the value of the concentration g
dient l in Eq. ~7!, and in Fig. 1 we show our simulations o
urban systems for different degrees of correlation. We
that the larger the degree of correlations the more comp
the clusters are. The correlations have the effect of aggl
erating the units around an urban area. In the simulated
tems the largest city is situated in the core~which acts as the
‘‘attractive’’ center of the city!, and this is surrounded by
small clusters or ‘‘towns.’’ The correlated clusters are fair
compact near their respective centers and become less
pact near their boundaries, in qualitative agreement with e
pirical data on actual large cities such as Berlin, Paris,
London.~see, i.e., Refs.@6,27#!. The strongly correlated cas
of Fig. 1~a! (a→0) results in a system of cities lookin
more realistic than the uncorrelated case@Fig. 1~c!#. The un-
correlated case results in a system of very small cities sp
around a central city, while the cities in the correlated ca
look more compact and more realistic.

The urban boundary of the largest city is defined to be
external perimeter of the cluster connected to the CB
Sincep(r ) decreases as one moves away from the core,
probability that the largest cluster remains connected
creases withr. Themeandistance of the perimeter from th
center r f is determined by the value ofr for which p(r )
equals the percolation threshold—i.e.,p(r f)5pc , so @21–
23#

r f5l21ln~1/pc!. ~8!

For distances smaller thanr f , there is a high concentra
tion of sites sincep(r ).pc , and the cluster thus generate
plays the role of the infinite cluster. For distance larger th
r f , we havep(r ),pc , so that only isolated clusters exis
which form the system of small cities surrounding the lar
city situated in the core.

The geometrical properties of the external perimeter
the largest city correspond to the properties of the exte
perimeter of the infinite cluster of the percolation problem
the absence of a gradient@21#. The critical properties of the
clusters can be analyzed in terms of the percolation pro
ties. Percolation clusters formed belowpc are characterized
by a finite connectedness length which is the typical dista
at which two sites are expected to be connected via nea
neighbor sites„do not confuse with the correlations intro
duced via Eq.~6!…. This connectedness length diverges wh
the infinite cluster forms atpc , i.e., j;up2pcu2n, wheren
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FIG. 1. Simulations of urban systems for different degrees
correlation. Here the urban areas are black. In all the figures, w
the value of the density gradient to bel50.009.~a! and ~b! Two
different examples of interactive systems of cities for correlat
exponentsa50.6 and 1.4, respectively. The development units
positioned with a probability that decays exponentially with t
distance from the core. The units are located not randomly a
percolation, but rather in a correlated fashion depending on
neighboring occupied areas. The correlations are parametrize
the exponenta. The strongly correlated case corresponds to sm
a (a→0). Whena.d, whered is the spatial dimension of the
substrate lattice (d52 in our case!, we recover the uncorrelate
case. Notice the tendency to more compact clusters as we inc
the degree of correlations (a→0). ~c! As a zeroth order approxi
mation, one might imagine the morphology predicted in the extre
limit whereby development units are positioned atrandom, rather
than in the correlated way of~a! and~b!. The results for this crude
approximation of a noninteractive~uncorrelated! system of cities
clearly display a drastically different morphology than found fro
data on real cities@such as shown in Fig. 2~a!#. The noninteractive
limit looks unrealistic in comparison with real cities, for the lack
interactions creates an urban area characterized by many s
towns spread loosely around the core.
is the connectedness length exponent. In the case of gra
percolation the clusters formed belowpc for r .r f are char-
acterized by this length, which is now a function of the d
tancer:

j~r !;up~r !2pcu2n. ~9!

Moreover, due to the existence of long range correlat
among the variables the exponentn is not universal, but
changes continuously with the degree of correlation given
a @18#. We will see that several critical properties of th
percolation clusters change with the correlations.

The widths f of the external perimeter of the largest ci
is defined as

s f[^~r 2r f !
2&1/2, ~10!

wherer f[^r &, andr belongs to the external perimeter of th
central cluster. The width of the external perimeter is a fu
tion of the concentration gradientl and it is known to scale
as @21#

s f;l2n/~11n!. ~11!

The value ofn corresponding to the uncorrelated perc
lation problem isn5 4

3 . However the presence of long rang
correlations of type~6! drastically affects the value of th
connectedness exponent, which is now a function ofa,n(a)
as observed in previous studies of long range correlated
colation @17,18#. We have simulated the correlated perco
tion problem with a gradient, and using Eq.~11! we find a
drastic increase ofn(a) with the increase of the long rang
correlations (a→0) @Figs. 3~a! and 3~b!#. In particularn(a)
seems to increase very drastically for a system of str
correlationsa→0. In fact for such a system, we expect
mean field situation where all sites in the lattice are co
nected to the rest of the sites. In this case the percola
threshold for the site percolation problem should bepc
50.5, and the connectedness length should be zero belopc
and infinite abovepc .

The scaling of the length of the urban boundary of t
largest city within a region of sizel ,

L~ l !;l De, ~12!

defines the fractal dimensionDe , which we calculate to have
valuesDe.1.33 for the uncorrelated case, andDe.1.4 for
strong correlations (a→0) @Fig. 3~c!#. The small variation
of the fractal dimension of the external perimeter does
rule out the fact that it may be independent of the corre
tions. These values are consistent with actual urban data
which values ofDe between 1.2 and 1.4 are measured@6#.

Near the frontier and on length scales smaller than
width of the frontiers f , the largest cluster has fractal d
mensiondf.1.89, as defined by the ‘‘mass-radius’’ relatio

M ~r !;r df , ~13!

where M (r ) is the mass of the cluster inside a region
radius r. The valuedf.1.89 corresponds to the fractal d
mension of the uncorrelated percolation clusters, and we
that it is valid independent of the correlations@18#. However,
as a→0 we expect a compact cluster with dimensiondf
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52. The fact that we are unable to see this limit might be d
to numerical limitations near the mean field pointa50.

The number of sites of the frontierNf also scales with the
concentration gradient@21#

Nf;l2n~df21!/~11n!. ~14!

This relation provides another way of calculating the frac
dimensiondf and the exponentn, which we used to verify
our calculations.

It is important to stress that under the present percola
picture cities are fractal structures only near the external
rimeter of the largest city, and on length scales smaller t
the width of the frontier defined by Eq.~10!. The width is a
function of the concentration gradientl @Eq. ~11!#, so that
the larger the spread of the city the larger the region wh
the city is fractal. However, at distances close to the cente
the largest city, the cluster is clearly nonfractal sincep(r )
.pc , and the cluster becomes compact. On the other side
larger distancesp(r ),pc , only small isolated clusters exis
with a definite connectedness length associated with th
@Eq. ~9!#, so that they are not fractal either.

V. AREA DISTRIBUTION OF URBAN SETTLEMENTS

So far, we have argued how correlations between oc
pancy probabilities can account for the irregular morpholo
of towns in a urban system. As can be seen in Fig. 2~a!, the
towns surrounding a large city like Berlin are characteriz

FIG. 2. Qualitative comparison between the actual urban d
and the proposed model.~a! Three steps of the growth with time o
Berlin and surrounding towns. Data are shown for the years 18
1920, and 1945~from top to bottom!. ~b! Dynamical urban simula-
tions of the proposed model. We fix the value of the correlat
exponent to bea50.05 ~strongly correlated case!, and choose the
occupancy probabilityp(r ) to correspond to the density profile
shown in Fig. 7. We use the same seed for the random num
generator in all figures.
e
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by a wide range of sizes. We are interested in the laws
quantify the town size distributionN(A), whereA is the area
occupied by a given town or ‘‘mass’’ of the agglomeratio

We have analyzed the distribution of areas of actual cit
such as the system of cities surrounding London and Be
for different years@Fig. 2~a!#, and we also analyzed the are

ta

5,

n

er

FIG. 3. ~a! Width of the external perimeter as a function of th
density gradient,s f(l), for several degrees of correlations.~b!
Connectedness length exponentn(a) as a function of the correla
tion exponenta calculated from~a! using Eq.~11!. The valuen
5

4
3 corresponds to the uncorrelated percolation problem (a52).

~c! Fractal dimension of the external perimeter of the largest clu
as a function of the degree of correlation,De(a).
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distribution of urban systems at larger scales by using
data of all settlements of Great Britain for the years 1981
1991 ~Fig. 4! @28#. In the case of the towns around Berl
and London, we first digitize the empirical data of Fig. 4.1
Ref. @27# @Berlin 1920 and 1945, shown in the last two pa
els of Fig. 2~a!#, and Fig. 10.8 of Ref.@6# corresponding to
London 1981. Then we count the number of towns that
covered byA sites, putting the result in logarithmicall
spaced bins~of size 1.2k, with k51,2, . . . ), andaveraging
over the size of the bin.

We calculate the actual distribution of the areas of
urban settlements around Berlin and London, and find@Fig.
6~a!# that for both cities,N(A) follows a power law with an
exponent close to 2:

FIG. 4. Urban settlements of all of Great Britain for the ye
1981. Every point corresponds to an occupied area of
3200 m2. Clusters of occupied areas are defined as the po
connected via nearest neighbors.
e
d

f
-

e

e

N~A!;A21.98 ~Berlin, 1920, 1945!, ~15!

N~A!;A21.96 ~London, 1981!. ~16!

Figure 6~b! shows the distribution of all urban areas in Gre
Britain for the years 1981 and 1991. We find a power la
with an exponent consistent with the data of London a
Berlin at smaller scales

N~A!;A22.03 ~Great Britain, 1981, 1991!. ~17!

Other studies recently confirmed the validity of these res
for larger length scales, and also for the population distri
tions which is known to scale as the occupied area@29#.

These results can be understood in the context of
model. Insight into this distribution can be developed by fi
noting that the small clusters surrounding the largest clu
are all situated at distancesr from the CBD such thatp(r )
,pc or r .r f . Therefore, we findN(A), the cumulative area
distribution of clusters of areaA, to be

N~A!5E
0

pc
n~A,p!dp;A2~t11/dfn!. ~18!

Here

n~A,p!;A2tg~A/A0! ~19!

is defined to be the average number of clusters containinA
sites for a givenp at a fixed distancer, and t5112/df .
Here

A0~r !;j~r !df;up~r !2pcu2dfn ~20!

corresponds to the maximum typical area occupied by a c
ter situated at a distancer from the CBD, whileg(A/A0) is a
scaling function that decays rapidly~exponentially! for A
.A0 .

In our numerical simulations we find a drastic increa
of n(a) with the increase of the long-range correlatio
(a→0) @Fig. 3~b!#. The connectedness exponentn(a) af-

0
ts

FIG. 5. Log-log plot of the area distribution functionN(A) cal-
culated for the present model for different degrees of correlat
From top to bottom,a50.2, a50.8, a51.4, and the uncorrelated
case. The linear fits correspond to the predictions of Eq.~18! using
the values ofn(a) from Fig. 3~b!, anddf51.89.
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fects the area distribution of the small clusters around
CBD ~Fig. 5!, as specified by Eq.~18!, and can be used to
quantify the degree of interaction between the CBD and
small surrounding towns. For instance, for a strongly cor
lated system of cities characterized by smalla, n(a) is
large so that the areaA0(r ), and the linear extensionj(r ) of
the towns will be large even for towns situated away fro
the CBD. This effect is observed in the correlated system
cities of Fig. 1.

FIG. 6. ~a! Log-log plot of the area distributionN(A) of the
actual towns around Berlin and London. We first digitize the e
pirical data of Fig. 4.1 of Ref.@27# @Berlin 1920 and 1945, shown in
the last two panels of Fig. 2~a!#, and Fig. 10.8 of Ref.@6# ~London
1981!. Then we count the number of towns that are covered bA
sites, putting the result in logarithmically spaced bins~of size 1.2k,
with k51,2, . . . ), andaveraging over the size of the bin. A powe
law is observed for the area distributions of both urban syste
The dotted line shows the predictions of our model for the unc
related case~the slope is 2.45!, while the dashed line gives result
for the strongly correlated case~the slope is 2.06!. Note that the
area distributions for both cities agree much better with the stron
correlated case (a→0). ~b! Log-log plot of the area distribution of
all the urban areas in Great Britain in 1981 and 1991. The data fi
a power law of exponent 2.03. Notice also the very small chan
of the urbanareas in a ten year period.
e

e
-

of

In Fig. 6~a! we plot the power law for the area distributio
predicted by Eq.~18! along with the real data for Berlin an
London and all Great Britain. In particular, the slope pr
dicted for the uncorrelated system is

N~A!;A22.45 ~uncorrelated model!, ~21!

while for the strongly correlated model it is

N~A!;A22.06 ~strongly correlated model,a→0!.
~22!

Therefore, we find that the power laws of the area distrib
tion of actual cities are consistent with the prediction@dashed
line, Fig. 6~a!# for the case of highly correlated system
These results quantify the qualitative agreement between
morphology of actual urban areas and the strongly correla
urban systems obtained in our simulations. Clearly, the
ponent of the area distribution provides a stronger test of
model against observations than does the fractal dimen
De of the perimeter.

VI. DYNAMICS

We now discuss a generalization of our static model
describe the dynamics of urban growth. Empirical stud
@15# of the population density profile of cities show a r
markable pattern of decentralization, which is quantified
the decrease ofl(t) with time ~see Table 4 in Ref.@30#, and
Fig. 7!. Therefore the dynamics in the model are quantifi
by a decreasingl(t), as occurs in actual urban areas. In t
context of our model, this flattening pattern can be explain
as follows. The model of percolation in a gradient can
related to a dynamical model of units~analogous to the de
velopment units in actual cities! diffusing from a central seed
or core@21–23#. In this dynamical system, the units are a
lowed to diffuse on a two-dimensional lattice by hopping
nearest neighbor positions. The density of units at the c

-

s.
r-

ly

to
s

FIG. 7. Semilog plot of the density of occupied urban are
rA(r )5e2lr for the three different stages in the growth of Berl
shown in Fig. 2~a!. Least square fits yield the resultsl.0.030,l
.0.012, andl.0.009, respectively, showing the decrease ofl
with time. We use these density profiles in the dynamical simu
tions of Fig. 2~b!.
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remains constant: whenever a unit diffuses away from
core, it is replaced by a new unit. The density of units can
mapped to the density of occupied urban areas

rA~r !5e2lr , ~23!

which in turn is proportional to thepopulationdensityr(r )
@6#. A well-defined diffusion front, defined as the bounda
of the cluster of units that is linked to the central co
evolves in time. The diffusion front corresponds to the urb
boundary of the central city. The static properties of the d
fusion front of this system were found to be the same
those predicted by the gradient percolation model@21–23#.
Moreover, the dynamical model can explain the decreas
l(t) with time observed empirically. As the diffusion fron
situated aroundr f moves away from the core, the city grow
and the density gradient decreases sincel(t)}1/r f .

These considerations are tested in Fig. 2~b!, which shows
our dynamical urban simulations of a strongly interacti
system of cities characterized by a correlation exponena
50.05 for three different values ofl obtained from the data
of Berlin from Fig. 7. Qualitative agreement is observed b
tween the morphology of the cities and towns of the act
data of Fig. 2~a! and the simulations of Fig. 2~b!.

VII. DISCUSSION: URBAN PLANNING

Throughout this century, the dominant planning policy
many western nations has been the containment of u
growth. This has been effected using several instrume
particularly through the siting of new settlements or n
towns at locations around the growing city which are cons
ered to be beyond commuting distance, but also through
imposition of local controls on urban growth, often coord
nated regionally as ‘‘green belts’’@31#. One of the key ele-
ments in the growth models we have proposed here is
characteristic length scale over which growth takes place
the case of the gradient percolation model, correlations oc
over all length scales, and the resulting distributions are fr
tal, at least up to the percolation threshold.

In examining the changing development of Berlin in F
2~a!, it appears that the fractal distribution remained qu
stable over a period of 70 years, and this implies that
controls on growth that there might have been do not sh
up in terms of the changing settlement pattern, implying t
the growth dynamics of the city are not influenced by su
control. A rather different test of such policies is provided
the case of London, where a green belt policy was first
tablished in the 1930s and rigorously enforced since
1950s. The question is whether this has been effective
changing the form of the settlement pattern. First, it is
clear that the siting of new towns beyond London’s comm
rt
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ing field was ever beyond the percolation field, and thus i
entirely possible that the planned new settlements in
1950s and 1960s based on existing village and town co
simply reinforced the existing fractal pattern.

In the same manner, the imposition of local controls
growth in terms of preserving green field land from develo
ment seems to have been based on reinforcing the kin
spatial disorder consistent with morphologies genera
through correlated percolation. The regional green b
policy was based on policies being defined locally and th
aggregated into the green belt itself, and this seems to
gest that the morphology of nondevelopment that resu
was fractal. This is borne out in a fractal analysis of dev
opment in the London region which suggests that the po
has little impact on the overall morphology of the ar
@6,32#. Moreover, we note that the coincidence between
settlement area distribution for different cities and differe
years ~Berlin 1920 and 1945, and London 1981! suggests
that local planning policies such as the green belt may h
a relatively low impact on the distribution of towns. Ou
model suggests that the area distribution is determined by
degree of interactions among development units, and tha
scaling properties are independent of time. Current deb
on urban growth have now shifted to the development
brownfield sites in cities, and it would be interesting to qua
tify the extent to which such future developments might
inforce or counter the ‘‘natural’’ growth of the city as im
plied in these kinds of models.

To develop more detailed and conclusive insights into
impact of urban policies on growth, it is necessary to deve
the model further. This model implies that the area and s
distributions, the degree of interaction among depend
units of development, and fractal dimension are independ
of time. The only time dependent parameter is the grad
l, and it appears that we might predict future urban for
simply by extrapolating the value ofl in time. However, we
have yet to investigate the influence of topography and o
physical constraints on development, the influence of tra
port routes and the presence of several ‘‘independent’’ c
tral cores or CBD’s in the urban region.

These models can also be further adapted to predict b
as well as site percolation, and in future work we will e
plore the extent to which such interactions between sites
cities might be modeled explicitly. Our interest in such e
amples is in the universality of the exponents that we h
demonstrated here, and which we wish to relate to the imp
of urban planning policies.
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