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Modeling urban growth patterns with correlated percolation
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We propose and test a model that describes the morphology of cities, the scaling of the urban perimeter of
individual cities, and the area distribution of systems of cities. The model is also consistent with observable
urban growth dynamics, our results agreeing both qualitatively and quantitatively with urban data. The result-
ing growth morphology can be understood from interactions among the constituent units forming an urban
region, and can be modeled using a correlated percolation model in the presence of a gradient.
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[. INTRODUCTION The size distribution of cities has been a fundamental
question in the theory of urban location since its inception in
Traditional approaches to urban science as exemplified ithe late 19th century. In the introduction to his pioneering
the work of Christallef1], Zipf [2], Stewart and Warnti3], ~ book published over 60 years ago, Christelllirposed a key
Beckmann[4], and Krugmar{5] are based on the assump- question: “Are there laws which determine the number, size,
tion that cities grow homogeneously in a manner that sugand distribution of towns?” This question has not been prop-
gests that their morphology can be described using conver@!ly answered since the publication of Christaller's book,
tional Euclidean geometry. However, recent studies hav&otwithstanding the fact that Christaller's theory antral
proposed 6] that the complex spatial phenomena associate®!aces [1], and its elaboration through theories suttte
with actual urban systems is rather better described usingnk-size rule for citieg2—4] embody one of the corner-
fractal geometry consistent with growth dynamics in disor-Stones of human geography.
dered medid7-9]. Our approach produces scaling laws that quantify such
Predicting urban growth dynamics also presents a chaMistributions. These laws arise naturally from our model, and
lenge to theoretical frameworks for cluster dynamics, in thathey are consistent with the observed morphologies of indi-
different mechanisms C|ear|y drive urban growth from thoseVidUal Cities and SyStemS Of Cities Wh|Ch can be CharaCterized
which have been embodied in existing physical models. IPy & number of fractal dimensions and percolation expo-
th|S paper, we deve'op a mathematica' mode| that re'ates tH@ntS. In tur.n, these dlmenSIonS are ConSI§tent W|th the den'
physical form of a city and the system within which it exists, Sity of location around the core of any city, and thus the
to the locational decisions of its population, thus illustratingtheory we propose succeeds in tying together both intraurban
how paradigms from physica| and chemical science can he|énd interurban location theories which have developEd in
exp|ain a unique|y different set Of natural phenomena_thd)ara”el over the last 50 yearS. Furthermore, the Striking fact
physical arrangement, configuration, and size distribution ofhat cities develop a power law distribution without the tun-
towns and cities. Specifically, we argue that the basic ideal)d of any external parameter might be associated with the
of percolation theory when modified to include the fact thatability of systems of cities to “self-organize[5].
the elements forming clusters are not statistically indepen-
dent of one another but are correlated, can give rise to mor-
phologies that bear both qualitative and quantitative resem-
blance to the form of individual cities and systems of cities. Cities grow in a way that might be expected to resemble
Some of these results were briefly described in RE]. the growth of two-dimensional aggregates of particles, and
We consider the application of statistical physics to urbarthis has led recent attemgts,11,13 to model urban growth
growth phenomena to be extremely promising, yielding ausing ideas from the statistical physics of clusters. In particu-
variety of valuable information concerning the way citieslar, the model of diffusion limited aggregatiofDLA)
grow and change, and more importantly, the way they mighf13,14] has been applied to describe urban groydh and
be planned and managed. Such information inclubes is  results in treelike dendritic structures which have a core or
not limited to the following: (i) the size distributions of “central business district’(CBD). The DLA model is a
towns, in terms of their populations and are@g;the fractal physical model used to describe aggregation phenomena, and
dimensions associated with individual cities and entire sysis related to problems from the field of oil recovery in which
tems of cities{iii) interactions or correlations between cities “viscous fingering” occurs when a low viscosity fluid is
which provide insights into their interdependence; éwmd  pushed under pressure into a fluid with a larger viscasity
the relevance and effectiveness of local planning policiespccurs when an oil field is flooded with water in an attempt
particularly those which aim to manage and contain growthto “push out the oil”).

Il. DLA MODEL
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The DLA model predicts that there exists only one largedecreases at a certain rate as the distance from the unit in-
fractal cluster that is almost perfectly screened from incom<reases. Thus the rules of placement are affected by long-
ing “development units”(people, capital, resources, @fco  range “interactions” that influence how clusters form and
that almost all the cluster growth occurs in the extreme pegrow. What happens at a given site depends on the state of
ripheral tips. However, quantitative data do not support allmany other sites. These correlations reflect the tendency of
the properties of the DLA model. For instance, the DLA people to locate next to one another, as articulated in tradi-
model predicts that the urban population dengify) de- tional urban science as economies of urban agglomeration.

creases from the city center as a power law In order to quantify these ideas, we consider toere-
I lated percolation moddl16—2( in the presence of a concen-
p(r)~r=-2, (1) tration gradienf21-23. We start by describing the uncor-

) ) ] ) related site percolation problem, which corresponds to the
wherer is the radial distance from the core, abd=1.7 S |imit where correlations are so small as to be neglig[ble
the fractal dimension of DLA. However, urban data haveg) \wve first define a random numbatr), called the occu-
been more commonly fit to an exponential defay]. In the pancy variable, at every site=(i,j) in a square lattice df2
DLA model only one large central place or cluster is gener-sjtes” The numbersi(r) are uncorrelated numbers with a

ated, while a real urban area is formed by a system of centra|niform probability distribution betweef0,1]. A site in the

plz_ices that are spatially disfcributed in a hierarchy of citiesice is occupied if the occupancy variahlér) is smaller
Still another concern regarding the morphology of the DLA o1 the occupation probability, which is a quantity fixed

model is that DLA is a simply connected cluster. Cities grow,r eyery site in the lattice. A cluster is a set of sites con-
in @ more compact way, with a well-defined urban boundary, g teq via nearest neighbor sites. Wipeis small only iso-
or external perimeter not accounted for by the dendritic fraciateq clusters exist. At a critical value of the concentration

tal growth of DLA. _ o called p, an “incipient infinite cluster” forms which, for a
Here we show that an alternative model, in which devel- .o system, connects two sides of the system.

opment units are correlated rather than being added to the o . "hasic model is a percolation model modified to intro-

cluster at random, is better able to reproduce the observeg,ce correlations among the units, and the fact that the con-
morphology of cities and the area distribution of subclusterg,gnation is not constant for all the points in the lattice but

(“towns” ) in an urban syster_n, and can also d_escribe urbaBresents the gradient shown in E@). In our model we
growth dynamics. Our “physical” modglL0], which corre-  qqider “development units” representing buildings,

sponds to the correlated percolation mofi—2q in the  oqnie and resources which are added to the cluster in simi-
presence of a density gradiei#1-23, is motivated by the |5 fashion as in percolation. Since these units are added in a
fact that in urban areas development attracts further develops related fashion. we next consider a modification of the

ment. The model offers the possibility of predicting the glo-
bal propertiegsuch as scaling behavjoof urban morpholo-
gies.

percolation problem to incorporate correlations among the
occupancy variables(r).

To introduce correlations among the variables we use a
method proposed in Reff20] which is a modification of the
ll. CORRELATED PERCOLATION MODEL Fourier filtering methodFfm) [24—26,18 suitable for large
systems. Consider a stationary sequence ®fincorrelated
random number$u(r)}, r=(,j),i,j=1,... L. The corre-
lation function is(u(r) u(r’))~ &, , with &, the Kro-
necker delta, and the brackets denote an average with respect
to a Gaussian distribution. We use the sequenge)} to

p(r)=pee ™, (2)  generate a new seq_uen{:e(r)}, with a long-range power-
law correlation functionC(/) of the form[20]

wherer is the radial distance from the CBD situated at the
core, and\ is the density gradient. The density gradient C(/)=(u(r) u(r'))=(1+7/2)"2 )
guantifies the extent of the urban spread around the central
core. The probability that a unit occupies a given spot dewhere /=|r—r’|, a is the correlation exponent, and the
creases gradually as the distance from a central, compaging-range correlations are relevant fox@<d=2, where
core increases. dis the dimension of the substratex=2 corresponds to the

(i) Second, in actual urban systems, the developmenincorrelated problem, and—0 to the strongly correlated
units are not positioned aandom Rather, there existorre-  problem.
lations arising from the fact that when a development unitis  The spectral densit(q), defined as the Fourier trans-
located in a given place, the probability of adjacent developform of C(/), has the form
ment units increases naturally; each site is not independently
occupied by a development unit, but is occupied with a prob- 20
ability that depends on the occupancy of the neighborhood. S(g)=5—5—~ (
In urban settings, development units do not attach them- T'(B2+1)
selves randomly to an existing cluster. Their placement is .
strongly influenced by the presence of other units. When avhereq=|q|, g;=27m;/L, —L/2<sm;<L/2,i=1 and 2,
unit occupies a certain location, the probability of additionaland 8,=(a—2)/2.{7(q)} are the Fourier transform coeffi-
development is highest in its vicinity, and this probability cients of{7(r)}, and satisfy

In the model we now develop, we take into account two
points.

(i) First, data on population densip(r) of actual urban
systems are known to conform to the relat[d’]

B2
2] ks @
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7(9)=(S(9)*u(q), (5) they are correlated in space. However, the correlations intro-
duced by Eq(6) go beyond this type of connection between
where {u(q)} are the Fourier transform coefficients of sites. Due to correlation of typ@), even sites which belong
{u(r)}. to different clusters are correlated.

The actual numerical algorithm fd¢fm consists of the Second, we consider that the probability of occupancy of
following steps: (i) Generate a two-dimensional sequencethe sites decays exponentially, with the center point always
{u(r)} of uncorrelated random numbers with a Gaussian diseccupied. This property of the system is independent of the
tribution, and calculate the Fourier transform coefficientstype of correlation chosen. The correlation exponerand
{u(q)}. (i) Obtain{7(q)} using Eqgs(4) and(5). (iii) Cal-  the density gradienx are the only parameters of the model
culate the inverse Fourier transform ¢#(q)} to obtain to be determined by empirical observations.

{n(r)}, the sequence in real space with the desired power-
law correlation function which asymptotically behaves as IV. STATICS
C()~r" (6) We first discuss the influence of the correlations on the

. . . . . morphology of a system of cities generated in the present
The assumption of power-law interactions is motivated bymodel. Therefore we fix the value of the concentration gra-

the fact that the “decision” for a development unit to be dient\ in Eq. (7), and in Fig. 1 we show our simulations of

Srban systems for different degrees of correlation. We see

from_ an occupied r_1e|ghborhood. . .that the larger the degree of correlations the more compact
Finally we consider that the development units are posis

. d o . . .~ the clusters are. The correlations have the effect of agglom-
tioned with a probability which behaves in the same faShlonerating the units around an urban area. In the simulated sys-
as known for citiedEq. (2)]. Therefore, we relax the as- )

X o tems the largest city is situated in the c@nhich acts as the
sumption that the concentratiom is constant for all the “attractive” center of the city, and this is surrounded by

E(r::gsa:g :)hoiilt?;ﬁ(;%' VE;ITS g}eo(é%r&;'gﬁg;h;gég%iﬁ;veIOpmenémalI clusters or “towns.” 'I_'he correlated clusters are fairly
compact near their respective centers and become less com-
p(H)=p(r)/po, (7 pact near their boundaries, in_qualitative agreement W_ith em-
pirical data on actual large cities such as Berlin, Paris, and
that behaves in the same fashion as is known in observatiodgndon.(see, i.e., Refd6,27)). The strongly correlated case
of real cities. This last modification corresponds to the perof Fig. 1@ (a—0) results in a system of cities looking
colation problem in the presence of a concentration gradierinore realistic than the uncorrelated cés@. 1(c)]. The un-
proposed in Refd.21-23. correlated case results in a system of very small cities spread
In order to apply the above procedure to the percolatioraround a central city, while the cities in the correlated case
problem, we study the probability distributid®(7) of the ook more compact and more realistic.
correlated sequence(r). We find that when the uncorre- ~ The urban boundary of the largest city is defined to be the
lated variablesi(r) are taken from a Gaussian distribution, €xternal perimeter of the cluster connected to the CBD.
n(r) also has a Gaussian distribution. We next discretize th&incep(r) decreases as one moves away from the core, the
variables generating a sequenqge(i,j), according to Probability that the largest cluster remains connected de-
wu(i,j)=0©(6—n(r)) where 6 is chosen to satisfyp(r)  creases with. Themeandistance of the perimeter from the
=% _P(7)d#, with p(r) the occupancy probability ané centerr; is determined by the valge af for which p(r)
is the Heaviside step function. equals the percolation threshold—i.@(r;)=p., so[21-
Notice that we have defined two different properties 0f23]
the system. First we introduced long range correlations
among the variables by modifying the occupancy variables re=\"tn(1/p). (8
n(r). These correlations are isotropic, i.e., all the points in
space are connected by interactions quantified by a power For distances smaller than, there is a high concentra-
law. The fact that we consider a slowly decaying power-lawtion of sites sincep(r)>p., and the cluster thus generated
scale-free function is due to the fact that any other correlaplays the role of the infinite cluster. For distance larger than
tion function will display a cutoff after which correlations r;, we havep(r)<p., so that only isolated clusters exist,
are negligible. Since we are looking at properties of actualvhich form the system of small cities surrounding the large
cities at large length scales, a coarse grain will transform a&ity situated in the core.
finite range correlated system into an uncorrelated system, The geometrical properties of the external perimeter of
i.e., a system with a finite cutoff in the correlations becomeshe largest city correspond to the properties of the external
uncorrelated at large scales. This situation does not occyrerimeter of the infinite cluster of the percolation problem in
when we consider power law correlations of the fo(@), the absence of a gradief1]. The critical properties of the
since it is a scale-free function. Thus correlations are exelusters can be analyzed in terms of the percolation proper-
pected to be relevant at all length scales. One must distirties. Percolation clusters formed belgy are characterized
guish the type of correlation introduced by E§) from the by a finite connectedness length which is the typical distance
correlations arising at the critical concentratipp. In this  at which two sites are expected to be connected via nearest
case, the connectedness length of the system is said to beighbor sites(do not confuse with the correlations intro-
infinite, since two occupied sites separated by an arbitrarguced via Eq(6)). This connectedness length diverges when
distance may be connected by the infinite cluster, and thuthe infinite cluster forms ap., i.e., é~|p—p¢ ", wherev
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is the connectedness length exponent. In the case of gradient
percolation the clusters formed belqw for r>r; are char-
acterized by this length, which is now a function of the dis-
tancer:

&) ~[p(r)=pc| " (€)

Moreover, due to the existence of long range correlation
among the variables the exponentis not universal, but
changes continuously with the degree of correlation given by
a [18]. We will see that several critical properties of the
percolation clusters change with the correlations.

The width o; of the external perimeter of the largest city
is defined as

o=((r—rp?*? (10

wherer¢=(r), andr belongs to the external perimeter of the
central cluster. The width of the external perimeter is a func-
tion of the concentration gradientand it is known to scale
as[21]

o_f,v)\fvl(lJrV). (ll)

The value ofv corresponding to the uncorrelated perco-
lation problem isv=%. However the presence of long range
correlations of typg6) drastically affects the value of the
connectedness exponent, which is now a function 0f( «)
as observed in previous studies of long range correlated per-
colation[17,18. We have simulated the correlated percola-
tion problem with a gradient, and using Ed.1) we find a
drastic increase of(«a) with the increase of the long range
correlations ¢—0) [Figs. 3a) and 3b)]. In particularv(«)
seems to increase very drastically for a system of strong
correlationsa—0. In fact for such a system, we expect a
mean field situation where all sites in the lattice are con-
nected to the rest of the sites. In this case the percolation
threshold for the site percolation problem should e
=0.5, and the connectedness length should be zero helow
and infinite abovep..

FIG. 1. Simulations of urban systems for different degrees of The scaling of the length of the urban boundary of the

correlation. Here the urban areas are black. In all the figures, we ﬁ!{argest city within a region of size/,
the value of the density gradient to be=0.009.(a) and (b) Two L(/)~/Pe
different examples of interactive systems of cities for correlation . S

exponentsy=0.6 and 1.4, respectively. The development units ar€yefines the fractal dimensidd,, which we calculate to have
p_osmoned with a probability that decays exponentially with the_valuesD621.33 for the uncorrelated case, abd=1.4 for
distance from the core. The units are located not randomly as in . . o

i . . ; strong correlations ¢—0) [Fig. 3(c)]. The small variation
percolation, but rather in a correlated fashion depending on thé the fractal dimension of the external perimeter d not
neighboring occupied areas. The correlations are parametrized bﬁ{lle §ut ?ﬁeafact t?la?(i?[ moay bee eindeep:n(?eent o? tehe (c:)grsrel:;

the exponent. The strongly correlated case corresponds to small. h | . ith | urban d f
a (a—0). Whena>d, whered is the spatial dimension of the tions. These values are consistent with actual urban data, for

substrate latticed=2 in our casg we recover the uncorrelated Which values oD, between 1.2 and 1.4 are measuf6¢

case. Notice the tendency to more compact clusters as we increase Ne€ar the frontier and on length scales smaller than the
the degree of Corre|a’[i0n$90)_ (C) As a zeroth order approxi_ width of the frontiero'f, the |argeSt cluster has fractal di-
mation, one might imagine the morphology predicted in the extreménensiond;=1.89, as defined by the “mass-radius” relation
limit whereby development units are positionedrandom rather d

than in the correlated way @&) and (b). The results for this crude M(r)~r®, (13
approximation of a noninteractiveincorrelatefl system of cities . L. .
clearly display a drastically different morphology than found from Wh(_are M(r) is the mass of the cluster inside a region _Of
data on real citiefsuch as shown in Fig.(8]. The noninteractive radiusr. The valued;=1.89 corresponds to the fractal di-
limit looks unrealistic in comparison with real cities, for the lack of Mension of the uncorrelated percolation clusters, and we find
interactions creates an urban area characterized by many smafat it is valid independent of the correlatidris]. However,
towns spread loosely around the core. as a—0 we expect a compact cluster with dimension

(12
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FIG. 2. Qualitative comparison between the actual urban date »
and the proposed modéh) Three steps of the growth with time of *
Berlin and surrounding towns. Data are shown for the years 1875 5| °
1920, and 194%from top to botton. (b) Dynamical urban simula- L
tions of the proposed model. We fix the value of the correlation ** e,
exponent to bexr=0.05 (strongly correlated cageand choose the 43 e 0000009
occupancy probabilityp(r) to correspond to the density profiles %0 o5 0 s 20
shown in Fig. 7. We use the same seed for the random numbe (94
generator in all figures.
1.42
=2. The fact that we are unable to see this limit might be due
to numerical limitations near the mean field point 0. T e e
The number of sites of the fronti®; also scales with the Tel ()
concentration gradieri2l] 138 | ~
Nf,v)\*v(df*l)/(lJrv). (14) %\ . ;\)\\. .
\./o 1.36 Sl
This relation provides another way of calculating the fractal =] L .
dimensiond; and the exponent, which we used to verify 134 | e
our calculations. s
It is important to stress that under the present percolatior 132 1
picture cities are fractal structures only near the external pe
rimeter of the largest city, and on length scales smaller thar

1.30

the width of the frontier defined by E¢10). The width is a 0.0 05 1006 15 20
function of the concentration gradient[Eq. (11)], so that

the larger the spread of the city the larger the region where FIG. 3. (a) Width of the external perimeter as a function of the
the city is fractal. However, at distances close to the center odensity gradiento;(\), for several degrees of correlation)

the largest city, the cluster is clearly nonfractal singe) Connectedness length exponeiftr) as a function of the correla-
>p,, and the cluster becomes compact. On the other side fdion exponenta calculated from(a) using Eq.(11). The valuev
larger distancep(r)<p., only small isolated clusters exist =3 corresponds to the uncorrelated percolation probler 2).
with a definite connectedness length associated with thert¢) Fractal dimension of the external perimeter of the largest cluster
[Eq. (9)], so that they are not fractal either. as a function of the degree of correlatid,(«).

by a wide range of sizes. We are interested in the laws that
quantify the town size distributioN(A), whereA is the area

So far, we have argued how correlations between occusccupied by a given town or “mass” of the agglomeration.
pancy probabilities can account for the irregular morphology We have analyzed the distribution of areas of actual cities,
of towns in a urban system. As can be seen in Fig),2he  such as the system of cities surrounding London and Berlin
towns surrounding a large city like Berlin are characterizedor different yeardFig. 2@)], and we also analyzed the area

V. AREA DISTRIBUTION OF URBAN SETTLEMENTS



PRE 58 MODELING URBAN GROWTH PATTERNS WIH . .. 7059

10° e 7
ol -
[+ 2 ]
A\Agg‘
2 *
10" F S hen®, ]
\A\‘\ D\.\
B We e i
‘\Q(Q ‘e
8
@ 10°F 245050 0% 209 ]
A ‘.
N’ [ %QQ 0 \ ]
Z A 9
102 L Qne B QQ ]
® 0=0.2 e Mo
; [ 0 o=08 KSe b ]
* a=14 At 0 %
4 T Ao
10 f A uncorrelated o Bh‘\.\k r
[ fo Ty Ve ]
L ]

10—6 L L ) )

10° 10’ 10° A 10° 10 10°

FIG. 5. Log-log plot of the area distribution functid®(A) cal-
culated for the present model for different degrees of correlation.
From top to bottomp=0.2, «=0.8, «=1.4, and the uncorrelated
case. The linear fits correspond to the predictions of(E§). using
the values ofv(a) from Fig. 3b), andd;=1.89.

N(A)~A~1% (Berlin, 1920, 1945, (15)
N(A)~A~1% (London, 198]. (16)

Figure &b) shows the distribution of all urban areas in Great
Britain for the years 1981 and 1991. We find a power law
with an exponent consistent with the data of London and
Berlin at smaller scales

N(A)~A"203 (Great Britain, 1981, 1991 (17

Other studies recently confirmed the validity of these results
for larger length scales, and also for the population distribu-
tions which is known to scale as the occupied d&3.

These results can be understood in the context of our
model. Insight into this distribution can be developed by first
noting that the small clusters surrounding the largest cluster
are all situated at distancesrom the CBD such thap(r)
<pcorr>r;. Therefore, we findN(A), the cumulative area
distribution of clusters of areA, to be

p
FIG. 4. Urban settlements of all of Great Britain for the year N(A)=J Cn(A,p)dp~A_(T+1/df”). (18
1981. Every point corresponds to an occupied area of 200 0
X200 ntf. Clusters of occupied areas are defined as the pointf_|
connected via nearest neighbors. ere
C . n(A,p)~A""g(A/A 19
distribution of urban systems at larger scales by using the (A.p) o o) 19

data of all settlements of Great Britain for the years 1981 angk gefined to be the average number of clusters contaiing
1991 (Fig. 4) [28]. In the case of the towns around Berlin gjies for a giverp at a fixed distance, and 7= 1+ 2/d;.
and London, we first digitize the empirical data of Fig. 4.1 of o

Ref.[27] [Berlin 1920 and 1945, shown in the last two pan- g 4

els of Fig. 2a)], and Fig. 10.8 of Ref[6] corresponding to Ag(r)~&(r)%~[p(r)—pc| (20
London 1981. Then we count the number of towns that are ) ) )

covered byA sites, putting the result in logarithmically Corresponds to the maximum typical area occupied by a clus-
spaced bingof size 1.3, with k=1,2, ...), andaveraging ter situated at a distancefrom the CBD, whileg(A/A) is a

over the size of the bin. scaling function that decays rapidlgxponentially for A
We calculate the actual distribution of the areas of the>Aq.
urban settlements around Berlin and London, and ffid. In our numerical simulations we find a drastic increase

6(a)] that for both citiesN(A) follows a power law with an of v(«) with the increase of the long-range correlations
exponent close to 2: (a—0) [Fig. 3(b)]. The connectedness exponer(ir) af-
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FIG. 7. Semilog plot of the density of occupied urban areas

10 . ' ' ' pa(r)=e~M for the three different stages in the growth of Berlin
N shown in Fig. 2a). Least square fits yield the resuks=0.030,\
] ™ (b) 3 =0.012, and\=0.009, respectively, showing the decrease\of
102 L \mg ] with time. We use these density profiles in the dynamical simula-
. tions of Fig. Zb).
: ., 1203
~ “.} In Fig. 6(a) we plot the power law for the area distribution
3 10° ¢ ¢ 4 predicted by Eq(18) along with the real data for Berlin and
ZzZ %‘” London and all Great Britain. In particular, the slope pre-
3 - E dicted for the uncorrelated system is
102 e Great Britain, 1981 S e Cous
3 * Great Britain, 1991 . \u E N(A)~A"= (uncorrelated modg| (21
1 ;;\h E while for the strongly correlated model it is
107, & o ™ e oy = e N(A)~A~2% (strongly correlated modet—0).
A (km) 22

S Therefore, we find that the power laws of the area distribu-
FIG. 6. () Log-log plot of the area distributioN(A) of the  tjon of actual cities are consistent with the predictidashed
actual towns around Berlin and London. We first digitize the em-|ing, Fig. §a)] for the case of highly correlated systems.
pirical data of Fig. 4.1 of Ref27] [Berlin 1920 and 1945, shownin - These results quantify the qualitative agreement between the
the last two panels of Fig.(8], and Fig. 10.8 of Refi6] (London  morphology of actual urban areas and the strongly correlated
1981. Then we count the number of towns that are covered\by ;-han systems obtained in our simulations. Clearly, the ex-
sites, putting the result in logarithmically spaced biassize 1.2, ponent of the area distribution provides a stronger test of our

:’V'\:‘ ik:t'z’r'v' .d) / arnfﬁver?gmgiot\;?br ttri1ensuzef cl’)f tthe k;ll;]nA pO\;ver; model against observations than does the fractal dimension
a S opserve (0] e area dadis utions of bo urpan syste SDeofthe pel’imeter.

The dotted line shows the predictions of our model for the uncor-
related caséthe slope is 2.45 while the dashed line gives results
for the strongly correlated cagéhe slope is 2.06 Note that the VI. DYNAMICS

area distributions for both cities agree much better with the strongly We now discuss a generalization of our static model to

correlated cased—0). (b) Log-log plot of the area distribution of . . . .
all the urban areas in Great Britain in 1981 and 1991. The data fit tdescrllt)ehthe dyr;amlcsdof qrban %.rlowt?. _Emplrlrc]:al studle_s
a power law of exponent 2.03. Notice also the very small changetlS] of the population ensny protile o .Cm?s show a re
of the urbanareas in a ten year period. markable pattern of Qec_entrahzanon, Wthh is quantified by
the decrease of(t) with time (see Table 4 in Ref30], and

fects the area distribution of the small clusters around thé&ig. 7). Therefore the dynamics in the model are quantified
CBD (Fig. 5), as specified by Eq18), and can be used to by a decreasing (t), as occurs in actual urban areas. In the
quantify the degree of interaction between the CBD and theontext of our model, this flattening pattern can be explained
small surrounding towns. For instance, for a strongly correas follows. The model of percolation in a gradient can be
lated system of cities characterized by small v(a) is  related to a dynamical model of unitanalogous to the de-
large so that the arefy(r), and the linear extensiof(r) of  velopment units in actual citigsliffusing from a central seed
the towns will be large even for towns situated away fromor core[21-23. In this dynamical system, the units are al-
the CBD. This effect is observed in the correlated systems dbwed to diffuse on a two-dimensional lattice by hopping to
cities of Fig. 1. nearest neighbor positions. The density of units at the core
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remains constant: whenever a unit diffuses away from théng field was ever beyond the percolation field, and thus it is
core, it is replaced by a new unit. The density of units can beentirely possible that the planned new settlements in the

mapped to the density of occupied urban areas 1950s and 1960s based on existing village and town cores
simply reinforced the existing fractal pattern.
pa(r)=e ', (23) In the same manner, the imposition of local controls on

growth in terms of preserving green field land from develop-
which in turn is proportional to thpopulationdensityp(r) ment seems to have been based on reinforcing the kind of
[6]. A well-defined diffusion front, defined as the boundary spatial disorder consistent with morphologies generated
of the cluster of units that is linked to the central core,through correlated percolation. The regional green belt
evolves in time. The diffusion front corresponds to the urbarpolicy was based on policies being defined locally and then
boundary of the central city. The static properties of the dif-aggregated into the green belt itself, and this seems to sug-
fusion front of this system were found to be the same agest that the morphology of nondevelopment that resulted
those predicted by the gradient percolation md@dl-23.  was fractal. This is borne out in a fractal analysis of devel-
Moreover, the dynamical model can explain the decrease ajpment in the London region which suggests that the policy
A(t) with time observed empirically. As the diffusion front has little impact on the overall morphology of the area
situated around; moves away from the core, the city grows [6,32]. Moreover, we note that the coincidence between the
and the density gradient decreases sinfg «1/r;. settlement area distribution for different cities and different

These considerations are tested in Figp) 2which shows years(Berlin 1920 and 1945, and London 1984uggests

our dynamical urban simulations of a strongly interactingthat local planning policies such as the green belt may have
system of cities characterized by a correlation exporent a relatively low impact on the distribution of towns. Our
=0.05 for three different values of obtained from the data model suggests that the area distribution is determined by the
of Berlin from Fig. 7. Qualitative agreement is observed be-degree of interactions among development units, and that its
tween the morphology of the cities and towns of the actuabcaling properties are independent of time. Current debates

data of Fig. 2a) and the simulations of Fig.(B). on urban growth have now shifted to the development of
brownfield sites in cities, and it would be interesting to quan-
VII. DISCUSSION: URBAN PLANNING tify the extent to which such future developments might re-

inforce or counter the “natural” growth of the city as im-

Throughout this century, the dominant planning policy inplied in these kinds of models.
many western nations has been the containment of urban To develop more detailed and conclusive insights into the
growth. This has been effected using several instrumentsmpact of urban policies on growth, it is necessary to develop
particularly through the siting of new settlements or newthe model further. This model implies that the area and size
towns at locations around the growing city which are considdistributions, the degree of interaction among dependent
ered to be beyond commuting distance, but also through thgnits of development, and fractal dimension are independent
imposition of local controls on urban growth, often coordi- of time. The only time dependent parameter is the gradient
nated regionally as “green belts31]. One of the key ele- )\ and it appears that we might predict future urban forms
ments in the growth models we have proposed here is thgimply by extrapolating the value of in time. However, we
characteristic length scale over which growth takes place. Ifhayve yet to investigate the influence of topography and other
the case of the gradient perCOlation model, correlations OCCLﬁhysicaj constraints on deve|0pment, the influence of trans-
over all |ength Scales, and the reSUlting distributions are fra.Cport routes and the presence of several “independent” cen-
tal, at least up to the perCOlation threshold. tral cores or CBD’s in the urban region_

In examining the changing development of Berlin in Fig.  These models can also be further adapted to predict bond
2(a), it appears that the fractal distribution remained quiteas well as site percolation, and in future work we will ex-
stable over a period of 70 years, and this implies that anyore the extent to which such interactions between sites and
controls on growth that there might have been do not showities might be modeled explicitly. Our interest in such ex-
up in terms of the changing settlement pattern, implying thagmples is in the universality of the exponents that we have

the growth dynamics of the city are not influenced by suchdemonstrated here, and which we wish to relate to the impact
control. A rather different test of such policies is provided inof urban planning policies.

the case of London, where a green belt policy was first es-
tablished in the 1930s and rigorously enforced since the
1950s. The question is whether this has been effective in
changing the form of the settlement pattern. First, it is not
clear that the siting of new towns beyond London’s commut- We thank the NSF and CNPq for financial support.
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